FractionQ1 of Exhaled Nitric Oxide Norms (FeNO) in Healthy North African Children 5–16 Years Old

Sonia Rouatbi, MD, PhD,1,2* Ashraf Alqodwa, MD,1 Samia Ben Mdella, MD,1 and Helmi Ben Saad, MD, PhD1,2

Summary. Aims: (i) To identify factors that influence the FeNO values in healthy North African, Arab children aged 6–16 years; (ii) to test the applicability and reliability of the previously published FeNO norms; and (iii) if needed, to establish FeNO norms in this population, and to prospectively assess its reliability. Population and Methods: This was a cross-sectional analytical study. A convenience sample of healthy Tunisian children, aged 6–16 years was recruited. First subjects have responded to two questionnaires, and then FeNO levels were measured by an online method with electrochemical analyzer (Medisoft, Sorinnes [Dinant], Belgium). Anthropometric and spirometric data were collected. Simple and a multiple linear regressions were determined. The 95% confidence interval (95% CI) and upper limit of normal (ULN) were defined. Results: Two hundred eleven children (107 boys) were retained. Anthropometric data, gender, socioeconomic level, obesity or puberty status, and sports activity were not independent influencing variables. Total sample FeNO data appeared to be influenced only by maximum mid expiratory flow (l sec$^{-1}$; $r^2 = 0.0236$, $P = 0.0516$). For boys, only 1st second forced expiratory volume (l) explains a slight ($r^2 = 0.0451$) but significant FeNO variability ($P = 0.0281$). For girls, FeNO was not significantly correlated with any children determined data. For North African/Arab children, FeNO values were significantly lower than in other populations and the available published FeNO norms did not reliably predict FeNO in our population. The mean \pm SD (95% CI ULN, minimum–maximum) of FeNO (ppb) for the total sample was 5.0 \pm 2.9 (5.4, 1.0–17.0). For North African, Arab children of any age, any FeNO value greater than 17.0 ppb may be considered abnormal. Finally, in an additional group of children prospectively assessed, we found no child with a FeNO higher than 17.0 ppb. Conclusion: Our FeNO norms enrich the global repository of FeNO norms the pediatrician can use to choose the most appropriate norms based on children’s location or ethnicity. Pediatr Pulmonol. 2012; 9999:1–15.

Key words: exhaled nitric oxide; norms; interpretation; child; Tunisia.

INTRODUCTION

Nitric oxide (NO) is produced by a wide variety of cell types including airway nerves, epithelial, inflammatory (macrophages, neutrophils, mast cells), and vascular endothelial cells. It is generated via a five-electron oxidation of a terminal guanidinium nitrogen on the amino acid L-arginine; this reaction is catalyzed by NO synthase.1–3 Since the demonstration of the presence of NO in the exhaled air by Gustafsson et al.4 in 1991, there have been several publications showing that the fraction of exhaled NO (FeNO) is elevated in many respiratory diseases, especially bronchial asthma in children.5,6 NO can be detected in exhaled air by several methods such as chemiluminescence, spectroscopy, electrochemical portable, and other methods currently under development.1,7 Cheaper and easy to use,8 FeNO analyzers are now readily available and increasingly used not only for the diagnosis of eosinophilic airway inflammation Additional supporting information may be found in the online version of this article.

1Service of Physiology and Functional Explorations, Farhat HACHED Hospital, Sousse, Tunisia.
2Faculty of Medicine of Sousse, Laboratory of Physiology, University of Sousse, Sousse, Tunisia.

Conflict of interest: None.

*Correspondence to: Prof. Sonia Rouatbi, MD, PhD, Faculty of Medicine of Sousse, «Ibn El Jazzar», Street Mohamed Karoui, Sousse 4000, Tunisia. E-mail: sonia.rouatbi@rns.tn

Received 20 May 2012; Accepted 3 October 2012.
DOI 10.1002/ppul.22721
Published online in Wiley Online Library (wileyonlinelibrary.com).

© 2012 Wiley Periodicals, Inc.
which is seen mainly in asthma,\(^9\) but also for its assessment.\(^{10,11}\) In addition, the American Thoracic Society and European Respiratory Society (ATS/ERS) have jointly demonstrated that some factors (i.e., age, atopy, and gender) may affect the FeNO values.\(^{12}\)

Interpretation of FeNO data relies upon comparison of measured values with predicted ones available from published norms (reference equations or normal values tables). However, to our knowledge, FeNO norms have only been established in four children populations.\(^{13–16}\) However, neither of these studies provided prospective verification for their studied populations, nor proposed a method of interpreting the measured FeNO (e.g., using an upper limit of normal (ULN) or a fixed percentage above which measured FeNO values would be considered as abnormal). The need for normal values specific to North African populations has been demonstrated for several physiological parameters.\(^{17–21}\) The applicability and the reliability of published FeNO norms\(^{13–16}\) should be assessed as regards to North African children, in order to avoid erroneous clinical interpretation of FeNO data in this population.

Moreover, the ATS/ERS have encouraged investigators to publish physiological norms for healthy populations of various racial backgrounds, to enable individual subject results to be compared with data from a racially similar population.\(^{12}\) The use of the same kind of assessment equipment and procedure is also recommended.\(^{12}\) Therefore, the present study aimed:

(1) To identify factors that influence the FeNO values of healthy North African, Arab children aged 6–16 years.

(2) To test the applicability and reliability of the previously published FeNO reference equations\(^{13–15}\) or normal values\(^{16}\) in this population (the null hypothesis is that there will be no difference between measured and predicted FeNO mean values).

(3) If needed, to establish FeNO norms in this population, and to prospectively assess its reliability.

METHODS

Study Design

This\(^{23}\) is a cross-sectional analytical study spread over 7 months (June 2011 to December 2011). It was conducted in the Department of Physiology and Functional Explorations in the Farhat HACHED Hospital in Sousse (Tunisia; altitude <100 m).

Study design consists of a sample of healthy Tunisian children (Arab race) in the region of Sousse, aged 6–16 years. Subjects were recruited from the children of the hospital workers, and from public and private schools. Information letters, clarifying the aims of the study, were put up in the Medicine Faculty and in the local different schools. When a child was interested, an appointment for medical questionnaires and exploration was fixed. Data from each volunteer child included: gender, age, height, weight, birth height and weight, smoking history (child or parents), medication use, medical history, physical examination, pubertal stage, sports activity, FeNO, and spirometry data. All children received a copy of their exploration, and when an unknown dysfunction was discovered, they were sent to a specialist. Study approval was obtained from the hospital Ethics committee, and written informed consent was obtained from all children and/or their parents.

Sample Size

The sample size is calculated according to the following predictive equation\(^{22}\): \(n = \frac{Z^2 \times p \times q}{\Delta^2}\), where “\(n\)” was the number of required children, “\(Z\)” was the 95% confidence level (\(= 1.96\)), “\(q\)” was equal to “\(1 - p\),” “\(\Delta\)” was the precision (\(= 7\%\)), and “\(p\)” was the estimation of children aged 5–16 years with a normal FeNO value. According to Buchvald et al.,\(^{16}\) among the 721 recruited children, only 405 children (\(P = 0.56\)) without outliers and atorics were retained (Supplementary E. Table 1). Plugging this relevant value into the predictive equation, the sample size was thus 193 children. Therefore, to determine the influencing factors and to establish FeNO norms, we recruited an initial group of 211 children (104 girls; 107 boys). To verify the reliability of our norms, we prospectively measured the FeNO in a second group of 24 additional healthy children (12 boys) meeting the inclusion criteria of the present study but having not participated to the first part.
Subjects

Volunteer children aged from 6 to 16 years were included. The following non-inclusion criteria were applied: chronic illnesses; a history of pulmonary diseases or related respiratory symptoms [history of asthma or medication asthma use, current or past symptoms of wheeze, chronic cough; abnormal lung function (obstructive ventilatory defect or abnormal spirometry data)]; oto-rhino-laryngologic diseases or symptoms [allergic rhinitis, rhinitis; symptoms and signs of acute upper respiratory infection during 2 weeks prior to assessment; recent upper airway infection (cold, flu, sore throat within the last 7 days)]; atopic dermatitis or eczema; regular medication use (especially steroids or β-agonist, leukotriene receptor agonist, etc.); heart disease; premature birth (i.e., birth before 36 weeks gestational age); active smoking; inability to perform properly FeNO measurement and imperfect realization of required respiratory maneuvers or inability to comply with the study procedure. The FeNO measure was performed after the non-inclusion criteria had been verified.

Medical Questionnaires

Two medical questionnaires recommended for epidemiological research were combined and used to assess several children characteristics. Questionnaires were written in Arabic and were composed of questions, mainly closed response and usually dichotomous. Questions were asked by an examiner with whom children or children-parents were not familiar. Children or parents of the subjects answered questionnaires regarding demographic data, general health information (especially birth weight, height, and gestational age noted from the personal health records), questions on clinical symptoms and diagnosis of allergic diseases.

Two subgroups of children were formed according to sports activity (non-active; active) based on the response to the following question: do you practice any sports activity outside of school? Two socioeconomic levels (SEL) were distinguished based on a socioeconomic score: ratio between the number of inhabited rooms and household size (<1.5: unfavorable; ≥1.5: favorable).

Physical Examination

Anthropometric data were verified, measured, or calculated: age, height, weight, body mass index (BMI), and body surface area (BSA, m²). The decimal age (accuracy to 0.1 years) was calculated from the date of measurement and the date of birth. Due to the failure of software to compute decimal age as the difference between test date and birth date, age was taken as the number of complete years from birth to the date of the study.

FeNO Measurement

The FeNO (expressed in parts per billion, ppb) was measured by Medisoft HypAir FeNO method using an electrochemical analyzer (Medisoft). The ATS/ERS recommendations were respected. The instrument was calibrated and used according to the manufacturer’s instructions, and work in conjunction with a personal computer. The software supplied by either manufacturer provided both audio and visual feedback allowing the participant to maintain a constant exhaled breath flow rate.

The online method, with constant flow rate, which is considered the method of choice, was used. The pediatric FeNO task force recommends expiratory flow rates of 50 ml/sec for online collection. After a full unforced exhalation outside the mouthpiece, a maximal inspiration was performed through an absorber to ensure NO-free air. The child then performed a controlled exhalation using flow control at an exhalation pressure of 4–10 cmH₂O for at least 6 sec, during which time sample collection and gas analysis was performed. Nasal contamination is presented by closure of the velum by using 5 cmH₂O oral back-pressure. A nose clip was not used. To encourage the child to exhale at a fixed flow rate of 50 ml/sec, the flow indicator on the device was replaced by a cartoon of a dolphin moving through hoops. Children were asked to not eat, drink, or participate in strenuous activity for 1 hr prior to the test.

Three acceptable measurements were taken at a flow rate of 50 ml/sec within a 15-min period according to ATS/ERS guidelines. The mean of the three values was used.

Spirometry Function Test

Spirometry was carried, according to the recent international recommendations, out in the sitting position,
and a nose clip was applied. All tests, performed by the same investigator using a spirometer (ZAN 100, Meßgeräte GmbH, Germany), were done after the FeNO measurement. The flow sensor of the spirometer was calibrated daily with a 3-L syringe.

The following parameters were measured/calculated: forced vital capacity (FVC, l); 1st second forced expiratory volume (FEV₁, l); forced expiratory flow from 25% to 75% of FVC (FEF₂₅–₇₅%, l sec⁻¹) and FEV₁/FVC ratio (absolute value). The results were compared with local age- and gender-matched reference values.

An obstructive ventilator defect was retained when the FEV₁/FVC ratio was lower than the lower limit of normal. FEV₁ and FVC were considered as abnormal when they were lower than the lower limit of normal.

Statistical Analysis

Data Analysis

For each child, the mean of the three FeNO values was used for statistical analysis. Preliminary descriptive analysis included frequencies for categorical variables and mean ± SD for continuous ones. The dependent variable (FeNO) was normally distributed and Fe NO measurement was calibrated with 1.64 times the residual standard deviation. The 95% CI (=1.64 × residual standard deviation) was calculated.

Comparison With Published Norms

Comparison was made by two ways:

(i) Individually measured FeNO were compared with the predicted FeNO from the published norms for the same age or height ranges as in the corresponding study, using paired t-tests and scatter plots or non-parametric tests and histograms. It is well known that FeNO values obtained with different devices are not directly comparable. As the Aerocrine devices are much more commonly used and most of the other devices give pretty similar results and as measurements on the HypAir FeNO are 1.6 times higher than those obtained with the Aerocrine NIOX and for a better interpretation of our data, we have adjusted our results in accordance with Brooks et al. For that reason all FeNO predicted values from the published norms were divided by 1.6 and individually measured FeNO were compared with the predicted/adjusted FeNO from the published norms as described above.

(ii) For more accuracy, a specific threshold (95% CI ULN) for each age range will be evaluated. For example, for a given child aged 12.0–12.9 years, FeNO value higher than the total sample FeNO 95% CI ULN, will be considered as abnormal.

Univariate and Multiple Regression Analysis: Influencing Factors

t-Tests were used to evaluate the associations between FeNO and the categorical variables (gender, SEL, sports activity, and obesity status). Pearson’s product-moment correlation coefficients (r) evaluated the associations between FeNO and the continuous measures (age, height, weight, birth height and weight, socioeconomic score, gestational age, BMI, BSA, qualitative score of Tanner, and pubertal stage by Tanner scale, FEV₁ (l, %), FVC (l, %), FEV₁/FVC (absolute value), FEF₂₅–₇₅% (l sec⁻¹, %)).

The linearity of association between FeNO and the continuous measures was checked graphically by plotting each regressor against the FeNO. Only significantly and linearly associated variables were entered into the model. A linear regression model was used to evaluate the independent variables explaining the variance in FeNO. Candidate variables were stepped into the model with a stepwise selection method. To determine entry and removal from the model, significance levels of 0.15 and 0.05 were used, respectively. No colinearity between predictors was detected with variance inflation factors. The linearity was evaluated by correlation (r) and determination (r²) coefficients and the standard error. The 95% CI (=1.64 × residual standard deviation) was calculated.

Pediatric Pulmonology
Reliability of the North African FeNO Norms

The reliability of our norms was evaluated in the second group of 24 healthy children. The number of children having a measured FeNO values higher than 95% CI ULN predicted normal values for each age range or for the total sample is determined. FeNO predicted normal values will be considered as reliable when no child from the second group will have a measured abnormal value.

Analyses were carried out using Statistica (Statistica Kernel version 6, StatSoft, France). Significance was set at the 0.05 level.

RESULTS

Children Data

An initial sample of 354 voluntary children Arab race was examined. Non-inclusion criteria, presented in detail in the Supplementary Data, were found in 119 children. Two hundred eleven healthy children (107 boys) were included to establish FeNO norms.

The SEL, sports activity, obesity, and puberty status of the 211 children are shown in Table 1. The two main conclusions from this table are: (i) Significantly fewer girls had a favorable SEL, or, were categorized as being active, than boys. (ii) Compared to boys, there are a significantly higher numbers of girls having a T5 of the qualitative score of Tanner or having level 3 of the pubertal stage by Tanner scale.

| TABLE 1—Socioeconomic Level, Sports Activity, Obesity, and Puberty Status |
|---------------------------------|-----------------|-----------------|-----------------|
| | Boys (n = 107) | Girls (n = 104) | Total sample (n = 211) |
| Socioeconomic level | | | |
| Unfavorable | 85 | 95 | 180 |
| Favorable | 22 | 9 | 31 |
| Sports activity | | | |
| Active | 59 | 38 | 97 |
| Non-active | 48 | 66 | 114 |
| Obesity status | | | |
| Normal weight | 80 | 80 | 160 |
| Overweight or obesity | 24 | 24 | 48 |
| Puberty status: qualitative | | | |
| score of Tanner | | 5, 11, 16 |
| T1 | 40 | 41 | 81 |
| T2 | 26 | 25 | 51 |
| T3 | 17 | 12 | 29 |
| T4 | 19 | 15 | 34 |
| T5 | 5 | | 16 |
| Puberty status: pubertal | | | |
| stage by Tanner | | 132 |
| 0 | 66 | 66 | 132 |
| 1 | 17 | 12 | 29 |
| 2 | 19 | 15 | 34 |
| 3 | 5 | | 16 |

Comparison With Published Norms

Fraction of FeNO Healthy North African Children

The number of children in each age group, the gender distribution, the anthropometric, spirometric, and FeNO data are given in Table 2. Among included children, the birth weight, birth height, and FVC (% predicted) were significantly higher among boys than girls, and the former’s FEV1/FVC was significantly lower.

Supplementary E. Figure 1 shows the distribution of the 211 healthy children according to gender and age range. The two main conclusions from this figure are: (i) Compared to boys, there is a significantly lower number of girls aged 13.0–13.9 years. (ii) Compared to boys, there is a significantly higher number of girls aged 14.0–14.9 years.

The FeNO data of the 211 children are shown in Figure 1, according to age, height, and weight ranges (Fig. 1A–C, respectively). A significant FeNO difference is found between children at the age of 9.0–9.9 and 10.0–10.9 years.

Univariate Analysis

In the total sample, gender (Table 2), SEL, obesity status, and sports activity (Table 3) did not significantly affect the FeNO value.

The correlation coefficient (r) between FeNO and the continuous children’s data are shown in Table 3. For the total sample, FeNO was significantly correlated (P < 0.05) with FEF25–75% (l sec−1/C0). For boys, FeNO was significantly correlated (P < 0.05) with age and FEV1 (l). For girls, FeNO was not significantly correlated with any of the other variables.

Multivariate Analysis: FeNO Influencing Factors

Table 4 presents the cumulative r2 of the independent influencing factors included in the FeNO forward linear stepwise multiple regressions.

For the included boys, only FEV1 (l) explains a slight (r2 = 0.0451) but significant FeNO variability (FeNO (ppb) = 3.17682 + 0.75009 × FEV1 (l)). After the predicted FeNO value for a given boy was computed from this equation, the ULN for the child could be obtained by adding 4.8 ppb.

For the total sample, only FEF25–75% (l sec−1) explains a slight (r2 = 0.0236) but significant FeNO variability (FeNO (ppb) = 3.91283 + 0.46666 × FEF25–75% (l sec−1)). After the predicted FeNO value for an individual child was computed from this equation, the ULN for the child could be obtained by adding 4.6 ppb.

Comparison With Published Norms

Comparison Without Values Adjustment According to Brooks et al.33

Figure 2 shows individually measured FeNO plotted against the corresponding predicted value for the same
<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Boys (n = 30)</th>
<th>Girls (n = 24)</th>
<th>Boys (n = 27)</th>
<th>Girls (n = 21)</th>
<th>Boys (n = 32)</th>
<th>Girls (n = 32)</th>
<th>Boys (n = 107)</th>
<th>Girls (n = 104)</th>
<th>Sample (n = 211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-6</td>
<td>6.5 ± 0.8</td>
<td>6.5 ± 0.9</td>
<td>6.6 ± 0.9</td>
<td>9.7 ± 0.9</td>
<td>12.5 ± 0.7</td>
<td>12.1 ± 0.7</td>
<td>15.2 ± 0.6</td>
<td>15.3 ± 0.9</td>
<td>105 ± 33</td>
</tr>
<tr>
<td>7-10</td>
<td>7.0 ± 1.0</td>
<td>7.1 ± 1.0</td>
<td>7.0 ± 1.0</td>
<td>10.2 ± 1.0</td>
<td>12.9 ± 1.0</td>
<td>11.9 ± 1.0</td>
<td>16.0 ± 1.0</td>
<td>16.1 ± 1.0</td>
<td>131 ± 35</td>
</tr>
<tr>
<td>11-13</td>
<td>8.5 ± 1.5</td>
<td>8.6 ± 1.5</td>
<td>8.5 ± 1.5</td>
<td>11.5 ± 1.5</td>
<td>13.5 ± 1.5</td>
<td>12.5 ± 1.5</td>
<td>17.5 ± 1.5</td>
<td>17.6 ± 1.5</td>
<td>162 ± 35</td>
</tr>
<tr>
<td>14-16</td>
<td>9.0 ± 2.0</td>
<td>9.1 ± 2.0</td>
<td>9.0 ± 2.0</td>
<td>12.0 ± 2.0</td>
<td>14.0 ± 2.0</td>
<td>13.0 ± 2.0</td>
<td>18.0 ± 2.0</td>
<td>18.1 ± 2.0</td>
<td>203 ± 35</td>
</tr>
</tbody>
</table>

Data are mean ± SD.

*P < 0.05 (boys vs. girls) from one range to the next.

**P < 0.05; boys versus girls.
Since age did not correlate with FeNO, we simply give a normal values range for FeNO for North African children aged 6–16 years. It is much simpler for clinicians to remember and device manufacturers to program.

The FeNO mean ± SD, 95% CI ULN and minimum–maximum of the 211 children are presented in Table 5. In practice, three ways can be used to interpret a measured FeNO value:

(i) Use of the total sample 95% CI ULN as a threshold. In this case, each child aged 5–16 years FeNO value higher than 5.4 ppb, is considered as abnormal.

(ii) For more accuracy, a specific threshold (95% CI ULN) for each age range is applied. For example, for a given child aged 12.0–12.9 years, each FeNO value higher than 7.7 ppb, is considered as abnormal.

(iii) Use of the total sample maximum FeNO value as a threshold. In this case, each child aged 5–16 years FeNO value higher than 17.0 ppb, is considered as abnormal.
Reliability of North-African FeNO Norms

The mean ± SD (95% CI) FeNO prospectively measured in the 24 children (10.6 ± 3.6 years, 141 ± 18 cm and 37 ± 14 kg) was 6.0 ± 3.0 ppb (4.8–7.3).

When we apply the normal values mentioned in Table 5, we found no child with a FeNO higher than the threshold (ULN) of 17.0 ppb or higher than the 95% CI ULN specific for each age range.

DISCUSSION

The FeNO of a large group of healthy North African/Arab children between 6 and 16 years old was prospectively measured. The available published FeNO norms did not reliably predict FeNO in our population and FeNO values are lower in healthy North African/Arab children than in other healthy populations. So, we can reject the null hypothesis that we would see no difference in the

TABLE 3—Univariate Analysis Between the Fraction of Exhaled Nitric Oxide (FeNO) and Children’s Data

<table>
<thead>
<tr>
<th></th>
<th>Girls (n = 104)</th>
<th>Boys (n = 107)</th>
<th>Total sample (n = 211)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-standardized regression coefficient</td>
<td>Cumulative determination coefficient</td>
<td>P level</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>0.04</td>
<td>0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>Height (m)</td>
<td>0.07</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>-0.02</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Body mass index (kg m⁻²)</td>
<td>-0.10</td>
<td>0.06</td>
<td>-0.01</td>
</tr>
<tr>
<td>Body surface area (m²)</td>
<td>0.02</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>Birth weight (mg)</td>
<td>-0.04</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>Birth height (kg)</td>
<td>-0.06</td>
<td>-0.03</td>
<td>-0.05</td>
</tr>
<tr>
<td>Duration of gestation (weeks)</td>
<td>-0.06</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>Pubertal stage by Tanner scale</td>
<td>0.03</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>Qualitative scale of Tanner</td>
<td>0.01</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>Socioeconomic score</td>
<td>-0.12</td>
<td>-0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>Forced vital capacity (FVC) (l)</td>
<td>-0.01</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>FVC (%)</td>
<td>-0.04</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>1st second forced expiratory volume (FEV₁) (l)</td>
<td>0.03</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>FEV₁ (%)</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>FEV₁/FVC (absolute value)</td>
<td>0.06</td>
<td>-0.11</td>
<td>-0.01</td>
</tr>
<tr>
<td>Forced expiratory flow from 25 to 75% of FVC (FEF₂₅₋₇₅%; l sec⁻¹)</td>
<td>0.10</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>FEF₂₅₋₇₅% (%)</td>
<td>0.14</td>
<td>0.02</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Univariate analysis between FeNO data and categorical variables

<table>
<thead>
<tr>
<th>Socioeconomic level</th>
<th>Unfavorable</th>
<th>Favorable</th>
<th>Sports activity</th>
<th>Active</th>
<th>Non-active</th>
<th>Obesity status</th>
<th>Normal weight</th>
<th>Overweight or obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls (n = 104)</td>
<td>4.9 ± 3.1</td>
<td>4.2 ± 1.7</td>
<td>5.4 ± 3.2</td>
<td>4.1 ± 2.1**</td>
<td>4.8 ± 3.0</td>
<td>4.7 ± 2.5</td>
<td>5.2 ± 3.0</td>
<td>5.1 ± 3.1</td>
</tr>
<tr>
<td>Boys (n = 107)</td>
<td>5.4 ± 2.9</td>
<td>4.4 ± 3.0</td>
<td>5.5 ± 2.7</td>
<td>5.1 ± 3.0</td>
<td>5.4 ± 3.0</td>
<td>4.8 ± 2.1</td>
<td>4.3 ± 2.1</td>
<td>4.7 ± 3.0</td>
</tr>
<tr>
<td>Total sample (n = 211)</td>
<td>5.2 ± 3.0</td>
<td>4.3 ± 2.1</td>
<td>5.4 ± 3.0</td>
<td>4.7 ± 2.7</td>
<td>5.1 ± 3.1</td>
<td>4.8 ± 2.3</td>
<td>4.6 ± 2.3</td>
<td>4.6 ± 2.3</td>
</tr>
</tbody>
</table>

*P < 0.05 (univariate spearmen correlation coefficients).
**P < 0.05 (t-tests) boys versus girls.

TABLE 4—Independent Variables Included in the Forward Linear Stepwise Multiple Regression Model for the Fraction of Exhaled Nitric Oxide

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Non-standardized regression coefficient</th>
<th>Cumulative determination coefficient</th>
<th>P level</th>
<th>Standard error</th>
<th>1.64 residual standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls (n = 104)</td>
<td>No variable is included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys (n = 107)</td>
<td>Constant 3.17682</td>
<td>0.0000</td>
<td>0.7715</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>1st second forced expiratory volume (l)</td>
<td>0.75009</td>
<td>0.0451</td>
<td>0.0281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sample (n = 211)</td>
<td>Constant 3.91283</td>
<td>0.0000</td>
<td>0.6778</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>75% of forced vital capacity (l sec⁻¹)</td>
<td>0.46666</td>
<td>0.0236</td>
<td>0.0516</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
means of the measured and predicted FeNO mean values. Our results strongly suggest that existing FeNO norms need to be modified for North African/Arab children. Thus, we established a table of normal values according to age ranges. For North African children of any age, any FeNO value greater than 17.0 ppb may be considered abnormal. Finally, in an additional group of children prospectively assessed, we found no child with a FeNO higher than the threshold of 17.0 ppb or higher than the 95% CI ULN specific for each age range.

Pediatric Pulmonology
Children Group

As for all the studies aiming to publish Fe\textsubscript{NO} norms,13–16 ours was not a random population sample. Some caution should be warranted when interpreting the results of cross-sectional studies in volunteers, because of a possible selection bias and cohort effects.34

Thus, longitudinal studies analyzed by appropriate statistical models are necessary to correctly describe the functional changes associated with age.23 Although no statistical methods were used to choose the children, the number studied and the fact that many schools in different areas of Sousse were included give a
reasonable degree of confidence in the data. Our recruitment mode and subject age range were similar to previous studies having comparable aims than ours (Supplementary E. Table 1).

According to international recommendations, a large number of subjects (i.e., $n \geq 100$) is needed to ensure no significant difference between the published norms and the values from the local community. Our sample size ($n = 211$) appears to be satisfactory since the calculated one is 193 children.

Because of the frequency of asthma (7–10%) and atopy in children population, we have chosen healthy children for this study. The childhood asthma is a major cause of pediatric emergency department visit, representing 5–6%. Thus, the early detection of this disease by measuring an easy and reliable parameter (FeNO) is desirable.

Non-inclusion criteria, applied in the present study, were inspired of similar studies according to ATS/ERS guidelines. In contrast of Buchvald et al. study where outliers were defined as FeNO values above arithmetic mean $+ 2$ SD, we have fixed the cut-off for outliers to the arithmetic mean $+ 3$ SD (equivalent to 17 ppb for girls aged 11.0–13.9 years where the mean of FeNO is 5.7 ppb; Table 2). In addition, when applied in our sample (i.e., age range of 15–16 years, FeNO mean \pm SD $= 5.6 \pm 4.0$), Buchvald et al. definition does not modify the number of our outliers.

The present study sample size ($n = 211$) appeared to be satisfactory when it is compared with those of other studies ($n = 657^{13}$; $n = 114^{14}$; $n = 661^{15}$; $n = 405^{16}$; Supplementary E. Table 1). We prospectively measured the FeNO in a second group of additional healthy children meeting the inclusion criteria of the present study. The validation group number ($n = 24$) seems small, but we think that it is sufficient to provide adequate validation since it is closer to those included in similar studies aiming to validate North African reference equations for spirometric, peak nasal inspiratory flow, and for 6-min walk distance data, respectively ($n = 28$), and $n = 41$. Our study is the first one that uses an evaluation group, to verify the reliability of children FeNO norms.

The exact definition of a “healthy” group is debatable in children but we avoided confounding clinical situations, according to the ATS recommendation. Our children were free from chronic disease, but 48 children (24 boys) showed overweight or obesity. However, as did other authors, children having thinness or obesity were not excluded. Cebella et al. showed that, in children, overweight or obesity was not associated with increased FeNO levels, but they were an independent risk factor for asthma and allergic sensitization. Other authors demonstrated that BMI in asthmatics may increase airway oxidative stress and could explain the BMI-related reductions in FeNO. Therefore, our group composition reflects this “healthy” population.

In similar studies (Supplementary E. Table 1), two questionnaires, the most recommended for epidemiological research, were used (ATS-DLD-78-C and ISSAC children’s questionnaires). In the present study, both were combined and used to evaluate children characteristics, with some modifications to fit the socio-cultural needs.

Table 5—Fraction of Exhaled Nitric Oxide (FeNO) Norms: FeNO Data (ppb) in Different Age Groups ($n = 211$)

<table>
<thead>
<tr>
<th>Age range (yr)</th>
<th>Number of children</th>
<th>Mean \pm standard deviation</th>
<th>95% confidence interval upper limit of normal</th>
<th>Minimum–maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0–5.9</td>
<td>21</td>
<td>4.2 \pm 2.5</td>
<td>5.4</td>
<td>1.0–10.0</td>
</tr>
<tr>
<td>6.0–6.9</td>
<td>13</td>
<td>4.8 \pm 2.0</td>
<td>6.0</td>
<td>1.0–8.0</td>
</tr>
<tr>
<td>7.0–7.9</td>
<td>20</td>
<td>4.7 \pm 2.8</td>
<td>5.9</td>
<td>1.0–12.0</td>
</tr>
<tr>
<td>8.0–8.9</td>
<td>19</td>
<td>4.7 \pm 2.2</td>
<td>5.8</td>
<td>2.0–11.0</td>
</tr>
<tr>
<td>9.0–9.9</td>
<td>16</td>
<td>3.9 \pm 1.8</td>
<td>4.8</td>
<td>1.0–7.0</td>
</tr>
<tr>
<td>10.0–10.9</td>
<td>23</td>
<td>6.3 \pm 2.9</td>
<td>7.5</td>
<td>2.0–14.0</td>
</tr>
<tr>
<td>11.0–11.9</td>
<td>20</td>
<td>5.5 \pm 3.1</td>
<td>7.0</td>
<td>2.0–13.0</td>
</tr>
<tr>
<td>12.0–12.9</td>
<td>15</td>
<td>5.7 \pm 3.6</td>
<td>7.7</td>
<td>2.0–17.0</td>
</tr>
<tr>
<td>13.0–13.9</td>
<td>9</td>
<td>4.2 \pm 1.5</td>
<td>5.4</td>
<td>2.0–6.0</td>
</tr>
<tr>
<td>14.0–14.9</td>
<td>24</td>
<td>4.7 \pm 2.5</td>
<td>5.7</td>
<td>2.0–12.0</td>
</tr>
<tr>
<td>15.0–16.0</td>
<td>31</td>
<td>5.6 \pm 4.0</td>
<td>7.1</td>
<td>2.0–16.0</td>
</tr>
<tr>
<td>5.0–16.0 total sample</td>
<td>211</td>
<td>5.0 \pm 2.9</td>
<td>5.4</td>
<td>1.0–17.0</td>
</tr>
</tbody>
</table>
Because environmental NO can reach high levels relative to those in exhaled breath, standardized techniques must prevent the contamination of biological samples with ambient NO. As recommended by the ATS/ERS, not withstanding which technique is used; ambient NO at the time of each test should be recorded. In the present study, mean ± SD (minimum–maximum) ambient NO concentration is 1.3 ± 1.3 ppb (0–4 ppb). Medisoft device has an absorption column with high capacities for detecting and eliminating ambient NO. Thus its function is not limited by the values of ambient NO.

As it is uncertain whether measurements need to be standardized for time of day (circadian rhythm effects), we were prudent and FeNO measurements were performed in the same period of the day (8 a.m. to 12 a.m.).

Interpretation of FeNO values relies upon comparison with predicted value available from published norms. To our knowledge, the present study is the first that reported FeNO norms for healthy North African children aged from 6 to 16 years. Therefore, there is a continuing need for such clinical research.

Non-Disease-Related Subject Factors Influencing FeNO Values

In the total sample, gender, anthropometric data, pubertal status, sports activity, and SEL did not significantly affect the FeNO. Only spirometric data influence significantly FeNO levels. These factors will be analyzed one by one in the following sections.

Gender effect: As in published studies (Supplementary E. Table 1), gender did not affect FeNO of Tunisian children. This factor could be reported after pubertal age. Additional information about the gender effect is detailed in the “Supplementary data.”

Age effect: As in two studies (Supplementary E. Table 1), age did not correlate with Tunisian children FeNO values (Table 4). Buchvald et al., in a population of 405 children, have found that the upper limit of the 95% CI was age dependent, ranging from 15.7 ppb at the age of 4 years to 25.2 ppb for adolescents. While some studies reported that FeNO increases with age (Supplementary E. Table 1), the mechanism for the age dependence of FeNO is largely unknown. Additional information about the age effect is detailed in the “Supplementary data.”

Body weight and BSA effects: In contrast of some children studies (Supplementary E. Table 1) or healthy adults studies, we have not reported a significant correlation between body weight or BSA and FeNO levels in either gender. As mentioned by Yao et al., a preliminary consensus reached between their study and that by Linn et al. is that the influence of weight on FeNO levels is relatively small.

Pubertal status effect: Pubertal status, a factor that had not been evaluated before, did not significantly affect the FeNO. It seems that hormonal modification did not affect the FeNO values.

Physical activity effect: Sports activity, a condition that had not been evaluated before, did not significantly affect the FeNO. During exercise, according to one report, FeNO increases, and this effect may last up to 1 hr. Others have reported that FeNO remains stable after exercise. It would seem prudent to avoid strenuous exercise for 1 hr before the measurement.

SEL effect: SEL, a factor that had not been evaluated before, did not significantly affect the FeNO. The effects of SEL on the spirometric variables are well documented in industrialized countries: a low SEL accelerates their decline and is associated with small airway obstruction.

Airway caliber effect: For the included boys and the total sample; respectively, only FEV1 (l) and only FEF25–75% (l sec−1) explain a slight but significant FeNO variability (Table 4). This result is not in agreement with previous published norms (Supplementary E. Table 1). However, it has been demonstrated that FeNO levels may vary with the airway caliber, perhaps because of a mechanical effect on NO output. Given that FEV1 correlated with FeNO only in boys (Table 4), one wonders whether boy’s larger airways produced more NO?

Why the Findings About the FeNO Determinants Are Not Consistent With Previous Literature?

There is much remaining variation that is unexplained, and several factors may be involved in addition to methodological factors, for example, subclinical airway inflammation of various causes, nutritional history, and race or genetic factors.

As FeNO values obtained with different devices are not directly comparable and may differ to a clinically relevant, as the device is used, we have adjusted our data according to Brooks et al. As can be seen (Supplementary E. Fig 3) and even after adjustment, our mean ± SD measured FeNO was significantly overestimated by the Canadian, the Taiwan, and the Finnish reference equations. Also, when compared with the adjusted values of the multicentre study, our mean
(95% CI ULN) measured FeNO remains significantly overestimated but only for the {10–13} and {14–16} age ranges. Therefore, care must be taken when comparing the present study FeNO results with those using different machines in different studies. Thus, the use of other studies FeNO norms may lead to misinterpretation of the FeNO values.

Among the published FeNO norms for children13–16 (Supplementary E. Table 1), none have proposed a method of interpreting the measured FeNO or have provided a prospective verification of their studied populations.

FeNO Norms and Interpretation

Due to the inadequacy of the published norms,13–16 we established local normal ranges adapted to our population. For practical and routine interpretation of FeNO, three ways were proposed.

A reference equation should include only easily measured anthropometric data that appears to influence FeNO. Spirometric parameters have been studied in our study and by some authors15,43 but were not retained for our and their final reference equations for a practical and simple interpretation. In the present study, no easily measured anthropometric data appear to explain FeNO variability. For that reason, we have not established a reference equation for FeNO and like in the study of Buchvald et al.16 (Supplementary E. Table 1), we have proposed local FeNO normal values (Table 5). In addition, compared to the published reference equations,13–15 we found significant differences between measured and predicted FeNO (Figs. 2 and 3). The measured FeNO of different age groups was compared with those measured in the multicentric study.16 In all instances, our mean (95% CI ULN) measured FeNO was significantly overestimated (Fig. 2). This can be explained by the racial factor13 and the method of measure (Medisoft vs. NIOX).33

Reliability of the Local FeNO Norms

The prospectively evaluated population demonstrated the problems of using normal ranges established in other populations. The reliability of the normal range we established was confirmed in the prospectively studied population, confirming the continuing need of establishing regional reference norms as stated by the ATS.12 This argues for the use of a specific reference norms in the present population. The implications of this for children with bronchial asthma may be considerable, resulting in a false-positive misdiagnosis of bronchial inflammation.

FeNO measurements offer a step forward in the assessment of airways disease. As an “inflammmometer,” FeNO provides the clinician with hitherto unavailable information regarding the nature of underlying airway inflammation, thus complementing conventional physiological testing, including the measurement of airway hyper-responsiveness. FeNO measurements are easy to perform, reproducible, and technically less demanding than induced sputum analysis. They are unreliable in current smokers and, when used diagnostically, in patients who have been taking inhaled or oral steroids recently.5

In conclusion, we have established reliable norms to interpret the results of FeNO in healthy North African children. The FeNO can easily be predicted according age-table ranges. Local FeNO norms enrich the global repository of FeNO norms the pediatrician can use to choose the most appropriate norms based on children’s location or ethnicity.

ACKNOWLEDGMENTS

Authors are thankful to directors of the Saladin primary school of Sousse and the Jawhara college of Sousse for their helping in the recruitment of children. Authors also wish to thank professors Lamia Boughammoura, Ahmed Abdelghani, and Iheb Bougmiza for their invaluable contribution in the preparation of the manuscript.

REFERENCES

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating your proofs with the necessary changes/additions.

- If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
- If you intend to annotate your proof by means of hard-copy mark-up, please refer to the proof mark-up symbols guidelines. If manually writing corrections on your proof and returning it as a scanned pdf via email, do not write too close to the edge of the paper. Please remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide additional clarification of answers to queries by entering your answers on the query sheet, in addition to the text mark-up.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>The Journal’s copyeditors have taken care to format your authorship according to journal style (First name, Middle Initial, Surname). In the event a formatting error escaped their inspection, or there was insufficient information to apply journal style, please take a moment to review all author names and sequences to ensure the accuracy of the authorship in the published article. Please note that this information will also affect external indexes referencing this paper (e.g., PubMed).</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>A running head short title was not supplied; please check if this one is suitable and, if not, please supply a short title of up to 45 characters that can be used instead.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Please check all headings.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>Please check the insertion of closing bracket.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>Please give address information for this manufacturer: town.</td>
<td></td>
</tr>
<tr>
<td>Q6</td>
<td>Please give address information for this manufacturer: town.</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>Please specify the significance for bold values.</td>
<td></td>
</tr>
<tr>
<td>Q8</td>
<td>Please specify the significance for bold values.</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>Please check the change made.</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>Please provide at least first ten authors names then retain et al. for the references [8,9,14,16,20,23,24,35,37,38,41,44,50].</td>
<td></td>
</tr>
</tbody>
</table>
INSTRUCTIONS FOR CHECKING PAGE PROOFS

A PDF page proof of your article is provided with these instructions. Its purpose is for you to:

- Proofread your article.
- Answer any queries (which, if present, are in a query list at the end of the article).
- Check the content and positioning of tables and figures.

It is important that you check this proof very carefully and answer all the queries. Please note that only essential corrections can be made at this stage. Also note that changes you make to your article that do not comply with the style of the Journal and those that are grammatically incorrect will not be incorporated.

Proofreading instructions
Read over your article carefully, and check that:

- There are no errors in the article (including data, equations and references).
- Author and address details are accurate.
- Content and positioning of tables and figures is correct (note that some photographs in the file may appear blurry, as figures in the PDF are low resolution).
- Special characters such as figure legend symbols and Greek letters have not corrupted.
- Any previously submitted amendments have been incorporated correctly.

Queries
- Any queries are listed on the last page of the proof, with a corresponding number in the margin next to the relevant text.
- Please ensure all queries are answered in full.

Return of approval to publish
- Add corrections or answers to any queries using e-Annotation. The instructions for using e-Annotation tools are on the following pages.
- Retain a copy of your corrections for your records.
- Email the Production Editor your approval to publish your article (either with or without amendment) and any corrections required. The Production Editor's contact details are given in the covering email.
- Prompt notification of your approval to publish your article is very much appreciated.
- Please contact the Production Editor if you have any queries.
Using e-Annotation Tools for Electronic Proof Correction

Required software to e-annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 8.0 or above). (Note that this document uses screenshots from Adobe Reader X)

The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/reader/

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We've picked out some of these tools below:

1. Replace (Ins) Tool – for replacing text.
 - Strikethrough through text and opens up a text box where replacement text can be entered.
 - How to use it:
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. Strikethrough (Del) Tool – for deleting text.
 - Strikethrough through text that is to be deleted.
 - How to use it:
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. Add note to text Tool – for highlighting a section to be changed to bold or italic.
 - Highlights text in yellow and opens up a text box where comments can be entered.
 - How to use it:
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. Add sticky note Tool – for making notes at specific points in the text.
 - Marks a point in the proof where a comment needs to be highlighted.
 - How to use it:
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

 Inserts an icon linking to the attached file in the appropriate pace in the text.

 How to use it
 - Click on the **Attach File** icon in the Annotations section.
 - Click on the proof to where you’d like the attached file to be linked.
 - Select the file to be attached from your computer or network.
 - Select the colour and type of icon that will appear in the proof. Click OK.

6. **Add stamp Tool** – for approving a proof if no corrections are required.

 Inserts a selected stamp onto an appropriate place in the proof.

 How to use it
 - Click on the **Add stamp** icon in the Annotations section.
 - Select the stamp you want to use. (The **Approved** stamp is usually available directly in the menu that appears).
 - Click on the proof where you’d like the stamp to appear. (Where a proof is to be approved as it is, this would normally be on the first page).

7. **Drawing Markups Tools** – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

 Allows shapes, lines and freeform annotations to be drawn on proofs and for comment to be made on these marks.

 How to use it
 - Click on one of the shapes in the **Drawing Markups** section.
 - Click on the proof at the relevant point and draw the selected shape with the cursor.
 - To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
 - Double click on the shape and type any text in the red box that appears.

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options:
electronic proof checklist, Pediatric Pulmonology

IMMEDIATE RESPONSE REQUIRED
Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY
• This will be your only chance to review these proofs.
• Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS (Queries for you to answer are attached as the last page of your proof.)
• Mark all corrections, including query answers, directly on the proofs, within the text. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY (Color figures will be sent under separate cover.)
• Check size, numbering, and orientation of figures.
• All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article.
• Review figure legends to ensure that they are complete.
• Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM BY CLICKING ON THE LINK SHOWN ON THE REPRINT ORDER PAGE
• If no reprints are desired, please ignore this reprints page.

RETURN ☐ PROOFS AND SIGNED COPYRIGHT TRANSFER AGREEMENT VIA EMAIL ONLY: SEE INSTRUCTION PAGE FOR SOFT PROOFING E-PROOFS*

1: RETURN CTA WITHIN 48 HOURS OF RECEIPT VIA SCANNED PDF FILE TO ppulprod@wiley.com
2: RETURN PROOF CORRECTIONS WITHIN 48 HOURS USING ADOBE ACROBAT NOTES TO ppulprod@wiley.com

*If you do not have access to Adobe Acrobat Notes tool, please either (a) mark the proofs with black pen and scan into a pdf to send as an email attachment, or (b) send your corrections by marking up your original manuscript in a Word document file.

QUESTIONS?
Alyson Linefsky, Senior Production Editor
Phone: 201-748-6723
E-mail: ppulprod@wiley.com
Refer to journal acronym and DOI number (i.e., PPUL 20000 for Pediatric Pulmonology ms 20000).
COPYRIGHT TRANSFER AGREEMENT

Date: ___________________ Contributor name: ___________________

Contributor address: __

Manuscript number (Editorial office only): __________________________

Re: Manuscript entitled __

for publication in __ (the “Journal”)

published by __ (“Wiley-Blackwell”).

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal’s instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue, Copyright © [year], copyright owner as specified in the Journal). Links to the final article on Wiley-Blackwell’s website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor’s Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back to the Contributor the following rights with respect to the final published version of the Contribution:
 a. After publication of the final article, the right to self-archive on the Contributor’s personal website or in the Contributor’s institution’s/employer’s institutional repository or archive. This right extends to both intranets and the Internet. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-peer reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].
 b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use, are set forth at the following website: http://www.wiley.com/go/funderstatement. NIH grantees should check the box at the bottom of this document.

3. Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:
 a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserve, website or automated delivery.
 b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.
 c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor’s institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor’s institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.
 d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).
 a. Contributors may re-use unmodified abstracts for any non-commercial purpose. For on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.
 b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:
 (i) Full and accurate credit must be given to the Contribution.
 (ii) Modifications to the figures, tables and data must be noted.
 Otherwise, no changes may be made.
 (iii) The reuse may not be made for direct commercial purposes, or for financial consideration to the Contributor.
 (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.
D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's internal network. Copies so used may not be resold or distributed externally. However the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of any applicable fee(s). Also, upon payment of Wiley-Blackwell's reprint fee, the U.S. Government may distribute print copies of the published Contribution externally.

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

- Contributor-owned work
- Company/Institution-owned work (made-for-hire in the course of employment)
- U.S. Government work
- U.K. Government work (Crown Copyright)
- Other Government work
- NIH Grantees

ATTACH ADDITIONAL SIGNATURE PAGES AS NECESSARY

Contributor's signature ___________________________ Date ____________

Type or print name and title ____________________________

Co-contributor's signature ___________________________ Date ____________

Type or print name and title ____________________________

Company or Institution (Employer-for-Hire) ____________________________ Date ____________

Authorized signature of Employer ____________________________ Date ____________

Note to U.S. Government Employees

A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor's signature line) and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm

Note to Non-U.S., Non-U.K. Government Employees

If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.

Note to NIH Grantees

Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate.
Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=PPUL

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about ‘Pay-Per-View and Article Select’ click on the following link: http://wileyonlinelibrary.com/ppv
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 4.0, 5.0 or 6.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat 4.0, 5.0 or 6.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat 4.0, 5.0 or 6.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or Document/Add a Comment (in Acrobat 6.0).

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.
Color figures were included with the final manuscript files that we received for your article. Because of the high cost of color printing, we can only print figures in color if authors cover the expense.

Please indicate if you would like your figures to be printed in color or black and white. Color images will be reproduced online in Wiley Online Library at no charge, whether or not you opt for color printing.

Failure to return this form will result in the publication of your figures in black and white.

<table>
<thead>
<tr>
<th>JOURNAL</th>
<th>VOLUME</th>
<th>ISSUE</th>
</tr>
</thead>
</table>

TITLE OF MANUSCRIPT

<table>
<thead>
<tr>
<th>MS. NO.</th>
<th>NO. OF COLOR PAGES</th>
<th>AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>No. Color Pages</th>
<th>Color Charges</th>
<th>No. Color Pages</th>
<th>Color Charges</th>
<th>No. Color Pages</th>
<th>Color Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>950</td>
<td>5</td>
<td>3400</td>
<td>9</td>
<td>5850</td>
</tr>
<tr>
<td>2</td>
<td>1450</td>
<td>6</td>
<td>3900</td>
<td>10</td>
<td>6350</td>
</tr>
<tr>
<td>3</td>
<td>1950</td>
<td>7</td>
<td>4400</td>
<td>11</td>
<td>6850</td>
</tr>
<tr>
<td>4</td>
<td>2450</td>
<td>8</td>
<td>4900</td>
<td>12</td>
<td>7350</td>
</tr>
</tbody>
</table>

Please contact the Production Editor for a quote if you have more than 12 pages of color

- [] Please print my figures in black and white
- [] Please print my figures in color

BILL TO:

<table>
<thead>
<tr>
<th>Purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
</tr>
<tr>
<td>Order No.:</td>
</tr>
<tr>
<td>Institution:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>Fax:</td>
</tr>
<tr>
<td>E-mail:</td>
</tr>
</tbody>
</table>